
Automatic Refactoring for Energy Efficiency in
Continuous Integration Pipelines

Ricardo Morais

Instituto Superior Técnico,

Lisbon, Portugal

ricardojhmorais@tecnico.ulisbo

a.pt

Luís Cruz

INESC TEC

Porto, Portugal

luiscruz@fe.up.pt

Rui Abreu

INESC-ID

Lisbon, Portugal

rui@computer.org

ABSTRACT

Contemporary society demands more than is currently

possible for battery technology on mobile devices.

Developers should meet this necessity by designing mobile

applications that take energy efficiency into account.

Energy-conscious practices have yet to proliferate in the

mobile development community and are often left behind

because developers do not know how to apply them and why

they are important, for instance bad energy efficiency in

applications tend to lead to bad application reviews and

consequently less sales. Moreover, developers are not

equipped with tools that help in that regard.

This work introduces LeafactorCI, a software solution that

assists developers by automatically refactoring energy

inefficient anti-patterns on Android projects, allowing them

to focus on creative work. LeafactorCI stands out because it

was designed to be lightweight, adaptable, and simple, to be

easily introduced to continuous integration environments.

LeafactorCI is evaluated on the GitHub platform with the

TravisCI integration which are the most popular Version

Control System platform and CI service, respectively.

Author Keywords

Continuous Integration, Energy bugs, Energy efficiency,

Anti-patterns, GIT, Gradle, Spoon, Android, Java.

ACM Classification Keywords

Software and its engineering---Software notations and tools-

--Software maintenance tool

INTRODUCTION
In recent years, there has been an increase in efforts by the

scientific community to improve the energy efficiency of

mobile devices through the improvement of the Application-

level [1, 2, 3]. In particular, Cruz and Abreu studied the

impact of fixing eight Android performance-related anti-

patterns on energy efficiency [2] and concluded that there are

five anti-patterns, that do positively influence energy

efficiency, specifically: ViewHolder, DrawAllocation,

WakeLock, ObsoleteLayoutParam, and Recycle. By

exploring this fact, in a later study, Cruz and Abreu

introduced Leafactor [3], a refactoring utility that

automatically cleanses android projects of four of those anti-

patterns.

Because Android developers are in need of an answer to their

energy bugs that considers their development practices [3, 4],

this work introduces the former Leafactor as an open-source

continuous integration solution that helps them to easily

purge energy-efficient anti-patterns in their source code.

Unlike other solutions, this work focus on automation and

adaptability by releasing a new implementation of Leafactor,

called LeafactorCI, published as a Gradle plugin powered by

Spoon (https://github.com/INRIA/spoon). The fact that most

CI services provide Docker containerization technology

means that the execution of Gradle tasks is widely supported.

Most Android applications are built on top of Gradle.

A significant number of benefits can be obtained from

adopting CI [5, 6, 7, 8]. Vasilescu et al. assessed the effects

of continuous integration by gathering data from GitHub

[36]. They collected 247 GitHub projects that at some point

introduced CI and found that after CI was added, more Pull-

Requests from the core developers were accepted, and fewer

rejected. In addition, fewer submissions from non-core

developers got rejected, suggesting that CI both improves the

handling of Pull-Request from insiders as well as outsiders.

On the other hand, they found that CI did not decreased user-

reported bugs. However, there was a decrease of developer-

reported bugs, which suggests that CI is helping developers

in that regard.

Objectives

Developers lack tools to properly enhance the energy

consumption footprint of their mobile apps and most online

resources are oriented on how to improve app performance,

which not always translates to improving energy efficiency

[4]. To solve this problem, it is proposed a solution that helps

them clear energy bugs in android applications and relieve

them of energy efficiency concerns. The adaptation to CI

practices was also considered as there is a growing number

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:

• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.

• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.

• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement

assuming it is single-spaced in Times New Roman 8-point font. Please do

not change or modify the size of this text box.
Each submission will be assigned a DOI string to be included here.

of developers turning to CI [5]. This work objectives will be

accomplished by:

• Introducing LeafactorCI a Gradle based plugin with a

smaller footprint and better performance than its

predecessor (Leafactor) by re-implementing the

refactoring rules using a slimmer and faster technology.

• Improving usability by providing LeafactorCI as a

Gradle plugin, enabling its integration with Android

projects and to adapt to several CI scenarios, enhancing

its chances to proliferate inside the developer

community.

• Suggesting a strategy for delegating refactoring

decisions to the developer through the automatic

creation of branches containing the fixes, such that they

can be merged after manual acceptance.

• Creating a test battery to establish the baseline of

support and avoid future regressions.

• Documenting the tool and publishing it in an alpha

version.

• Evaluating the final solution by answering the following

three questions by either conducting a user study on a

set of volunteers or through analysis and demonstration:

o Can LeafactorCI be used inside a CI

environment?

o Can LeafactorCI effectively relay refactoring

decisions to the project integrators?

o How easy it is to adopt LeafactorCI?

RELATED WORK
In [12], Cruz and Abreu emphasized the particularities of

energy profiling and reviewed empirical studies that based

their findings on data obtained from tools such as

PowerTutor, eProf, and eCalc. In the same study Cruz and

Abreu use a hardware power measuring device to evaluate

their work, justifying that estimation software is usually only

compatible with specific smartphone models and Android

versions, making evaluation very difficult. Further, they

showed that it is possible to improve energy efficiency by up

to 5% just by making changes to the Application-level which

can equate to a significant quantity of battery life minutes

saved.

Cruz and Abreu also compiled a guideline for fixing a set of

five patterns which form in Android projects and impact

energy efficiency. They are:

• ViewHolder - This pattern appears in List Views. When

in a List View, the system must draw each item and the

problem arises when the method findViewById is called

several times, this method is known for being a very

expensive method.

• DrawAllocation - Allocating objects during a drawing

or layout operation is a bad practice. Allocating objects

can cause garbage collection operations that will slow

down the operation and create a non-smooth User

Interface (UI).

• WakeLock - Wake locks are mechanisms to control the

power state of the mobile device. This can be used to

wake up the screen or the Central Processing Unit (CPU)

when the device is in a sleep state to perform tasks. If an

application fails to release a wake lock or uses it without

being strictly necessary, it can drain the battery.

• ObsoleteLayoutParam - During development, UI views

might be refactored several times. In this process, some

parameters might be left unchanged even when they

have no effect on the view. This causes useless attribute

processing at runtime leading to battery consumption.

• Recycle - There are collections such as TypedArray that

are implemented using singleton resources. The problem

occurs when the resource is not released properly,

leading to inefficient resource management.

Cruz and Abreu used the refactoring technique to fix anti-

patterns in the source-code of mobile applications. In earlier

work [3], Cruz and Abreu showcased Leafactor, a toolset

designed to automatically purge five android specific anti-

patterns that negatively affect energy consumption.

Leafactor is divided into two engines, one is a Java

refactoring engine based on the open-source project

AutoRefactor [9] and the other is an Extensible Markup

Language (XML) refactoring engine made from scratch to

deal with layout related anti-patterns. Because most of

Leafactor was implemented on top of AutoRefactor, which

depends on the Eclipse Java Development Tool (JDT) library

which makes it, therefore, bound to either be used as an

Eclipse Integrated Development Environment(IDE) plugin

or as a headless plugin. This is a disadvantage as it restricts

its domain and therefore its usefulness.

Testing is a fundamental part of continuous integration [5] as

such it needs to be taken seriously. Cruz et al. investigated

the working habits and challenges of mobile app developers

with respect to testing [5]. They conduct a large-scale study

on 1000 open-source android applications and concluded

that android apps are failing to use automated testing. About

40% of the applications had used testing technologies. The

testing technologies were JUnit (used in unit testing); and

Espresso (used in Graphical User Interface (GUI) testing).

Cloud testing services were not very adopted, the most used

technology was Google Firebase. Cruz et al. also found that

the most popular CI service is TravisCI. Cruz et al. explain

that it is important to simplify the learning curve and setup

of such tools for them to be adopted. Even though the status

of testing and CI looks grim, there is a growing number of

mobile developers becoming aware of the importance of

testing [5].

ARCHITECTURE

Figure 1. LeafactorCI architecture.

LeafactorCI is not just a software application, it is a software

solution. As such it expands beyond the realm of a single

system. Its purpose is to solve a problem, to remove patterns

in the source code of Android applications, but in an elegant

and easy manner, such that it becomes inconspicuous in the

development process. The solution revolves around the

Spoon refactoring engine. Spoon is the library that provides

support for querying and refactoring the source-code of the

Android applications. In LeafactorCI, 4 refactoring rules

were implemented to refactor each of the 4 refactoring

patterns mentioned previously. This implementation is

defined as the LeafactorCI Main Library. In order to

facilitate the integration of the tool with the Android

environment, a Gradle plugin was created (LeafactorCI

Plugin) which allows for any Android project to integrate

and use the LeafactorCI Main Library, the plugin serves

as an interface between the Gradle build tool and the

Leafactor Main Library. The LeafactorCI Plugin is also

published in the Gradle Plugin Repository, which makes it

readily available for download. Now, since Gradle is used, it

can be leveraged in a continuous integration environment,

since a virtual container (a trimmed out runnable layer of an

operating system, used with technologies such as Docker and

Vagrant) can be launched automatically on specific

conditions such as when a commit is made in the main branch

of the Android application repository. Such a container can

be used to run a Gradle task that starts a refactoring on the

code through the LeafactorCI Plugin. Since GIT is used to

clone the Android application to the container it is possible

for the changes made by the LeafactorCI Main Library to

be committed back in a separate branch, leaving the

developers with the responsibility to either merge or delete

the branch.

IMPLEMENTATION

Spoon does not enforce any methodology for purging anti-

patterns, in fact it simply lets us find, add, modify, and

remove nodes in the AST (Abstract Syntax Tree). We can

expect many possible cases to lead to an anti-pattern to form,

essentially the disposition of variables and control flow in the

code can complicate things. For instance, consider the

Recycle anti-pattern, where the objective is to release an

acquired resource after using it. Now picture a method that

acquires such a resource and sends it to another method if

some condition is met. We know that the resource should be

recycled, but where it should be recycled is the question.

There are several cases of interest that need to be evaluated

to decide what is the right modification to be applied.

LeafactorCI uses a pipeline algorithm to detect and process

such cases. The algorithm is divided into 4 phases to deal

with the process of concisely detecting cases of interest,

transforming them, and refactoring them inside imperative

blocks of code. Structuring the refactoring process this way

allows for measurements to be taken and should lead to more

consistency and predictability. The artifact responsible for

refactoring each of the anti-patterns using the 4 phases is

what we call a Refactoring Rule.

Testing

To assert that the cases are being correctly refactored, a

testing suit was created. The testing suit is powered by JUnit

a very popular unit testing tool. What it does is dynamically

investigate the src/test/resource folder to find folders with

the same name as the refactoring rules classes. If the names

match, then it looks for its sub-folders to find the tests. Each

test folder contains an input and an output file where the

input is the file provided and the output is the file with the

expected result that should be generated by LeafactorCI

when using the input file. With this setup, adding new tests

is easy. Simply add a new folder under the refactoring rule

folder and an input and output file inside it. As of now there

are 25 tests distributed between the four refactoring rules.

Continuous Integration

Gradle does most of the job in supporting CI. A simple script

was created such that it can be used as reference for

integrating LeafactorCI. The script is shown in the code

listing 1. The script leverages GIT to control and push

changes to the repository. It is expected that a cloned GIT

repository is in place as it is common for a CI platform to

clone the repository at a specific branch or commit. It starts

by attributing the user identification since operations will be

done by an automatic script. Then the revision number is

collected to identify the changes that will be made. A new

branch is then created and checked out, meaning that any

changes will be committed in this branch. The branch name

has the revision suffixed. Then the Gradle build process is

started, followed by the execution of the refactor operation.

Every change is then added to the stage and committed with

a simple message. If the remote is wrong, it can be setup

using the GIT remote add operation. Finally, the changes are

pushed to the remote repository.

Code listing 1. CI template script.

EVALUATION

To evaluate the difficulty of adoption we conducted a small

user study composed of 2 surveys and a hands-on installation

trial.

To dissimulate the understanding about the usage of energy

practices and publicize LeafactorCI we devised a short and

informational survey and published it in the GitHub software

community. The survey was composed of the following

questions along with related information:

• What is the role that best describes you?

• Have you worked in any Android mobile applications?

• Have you ever heard about energy bugs (bugs in the

code that lead to more energy consumption), are they a

concern to you?

• Would you like to hear more about what they are?

• There is a new free and open-source tool called

LeafactorCI that just came out in alpha stage that can

detect and refactor the previously mentioned anti-

patterns and can even be integrated into a CI

environment, would you be willing to learn more about

it?

• LeafactorCI is very easy to setup. Would you be willing

to try LeafactorCI?

The questionnaire was answered by 16 different people.

56.3% described themselves as developers, 12.5% of them

as Software Architects, 12.5% as Lead Developers the rest

of them described themselves as other roles related to

application development. 75.0% of them had worked on

Android mobile applications while the rest did not. 56.2%

have heard about energy bugs, at least 37.5% say they are a

concern to them (there were ambiguous answers that we did

not consider as a definite yes). Only 31.3% knew about at

least one of the 4 patterns (Recycle, View Holder, Draw

Allocation and Wake Lock). 82.3% wanted to know more

about the patterns. After briefly being introduced to

LeafactorCI, 78.6% said that they were willing to know more

about it, however, only 63.6% said that they were willing to

try it.

While the sample is small, the results suggest that energy

practices are not disseminated enough through the

community and that the community is willing to try

LeafactorCI.

A small experiment was also conducted with 3 developers.

The process was as follows, they had to choose a couple of

Android open-source repositories at random with more than

300 commits, then they had to try to install LeafactorCI on

each of them to see how easy it would be. They were asked

to first select the repositories (at least 3 repositories per

person) and then to fork them. After that they were to make

the installation and commit the changes back to the forked

repository. Then, they were asked to run the LeafactorCI tool

and if any changes were to occur, they were to be committed

to the forked repositories as well. At the end they were asked

to fill in a survey with the following questions:

• Were you able to install LeafactorCI?

• How difficult was the installation process? Leave empty

if you were not able to set it up. (1 - 5).

• Did you need to troubleshoot while setting up

LeafactorCI? Leave empty if you were not able to set it

up.

• Were you able to run the refactoring task?

• Did LeafactorCI correct any problems in your

application? Leave empty if you were unable to run it.

• Did you find LeafactorCI useful? Do you see potential

in it?

The three participants were able to make the installation.

Two of the participants reported that the difficulty was a one

out of five and one participant reported that it was a two out

of five. Two of the participants had to troubleshoot. Every

single one of the participants was able to run the refactoring

task. Two of the participants found at least one of the anti-

patterns in at least one of the repositories. Finally, all the

participants found the tool useful and with potential.

In total 11 arbitrary repositories (whose forks can be found

in

https://gist.github.com/moraispgsi/bc3eca2f92d3151bc85ac

86f2248078e) were tried. From what we could gather,

LeafactorCI did not detect energy bugs in most of the

repositories, only two repositories out of the 11 were found

to have energy bugs. Also, there were one or two repositories

where problems were found that prevented the execution of

the refactoring task due to bugs in the Spoon library. One of

which lead us to an open issue. Other problems were related

to Gradle version incompatibilities that were easily

overcome. The installation was most of the time easy.

Outside of this user study a few other people have tried and

successfully used LeafactorCI to see if there were problems

in their project, to which as far as we know, no energy bugs

were found.

Can LeafactorCI be used inside a CI environment?

Before addressing the main question, let us consider a sub-

question. Does LeafactorCI work in a normal environment?

Yes, and the way this was guaranteed was by mean of

introducing a test battery that given an input file executes

LeafactorCI over it and check if the output corresponds to

the optimal output file. There are 25 tests each, in most cases,

with more than one variation of the anti-patterns present.

This guarantees that LeafactorCI can support the set of

conditions present in the input files which account for the

most common usage. In all the testing cases the code

semantics were guaranteed. For other use cases that this test

battery does not cover, the guarantee for maintaining the

code semantics falls back to the reviewer (which in a

collaborative environment would be called the project

integrator), along with the possibility of false positives.

To be used, LeafactorCI needs to be published and be readily

available. During this work, LeafactorCI was released in

alpha stage (as a Gradle plugin in the Gradle plugins

repository at

https://plugins.gradle.org/plugin/tqrg.leafactor.ci) and can

be found at https://github.com/TQRG/leafactor-ci. In the

README.md of the LeafactorCI repository is the

instructions for the installation along with a FAQ section. In

the same README.md file is present the instructions to

execute and publish LeafactorCI as a contributor. Finally,

there is a section of known issues and their respective states

of resolution.

Now, to show that LeafactorCI can be setup in a CI

environment, during this work, a fork was made from an

open-source Android project called Slide (the forked

repository is, at present time, at

https://github.com/TQRG/Slide). Then, the LeafactorCI

plugin installation was made and the travis.yml file was

modified(which is the file that is used to configure the CI

pipeline in TravisCI), the changes can be found in

https://github.com/TQRG/Slide/commit/f063e548bd2f770b

de96b401096236ae6b8cf3af along with some other

unrelated changes that were necessary to bring the project

back to more modern versions. The changes were easy to

make. It was set up such that whenever a commit is done to

the codebase, a new branch is created and LeafactorCI is

executed. A pull request could then be created to decide the

branch's merge-ability.

How easy it is to adopt LeafactorCI?

LeafactorCI is meant to be easy to adopt since it leverages

the same platform that the Android project is built upon,

Gradle. The installation process is very easy, excluding some

hiccups that may happen it can be as simple as adding a line

of code inside a file (build.gradle file). Of-course due to the

differences between every Android project, such as its own

setup and its version dependencies there might be some

inconveniences to be overcome. As of now, we have yet to

compile a list of system requirements and supported versions

of Gradle and the Android SDK. we believe that by

publishing an alpha version those problems will become

more evident and troubleshooting instructions will be added

incrementally to the LeafactorCI project documentation.

Adopting LeafactorCI right now comes with the problems of

any new software project, it has bugs, it has the bare

minimum options and there is no community support. Early

adopters must take this into consideration and look past to

see its potential. A major advantage of LeafactorCI is its

open-source nature, anyone finding difficulties can open an

issue or even contribute the source-code.

In terms of adopting LeafactorCI in a CI environment some

questions should be place on the developers:

• Do I need LeafactorCI? A project with very few changes

over time might not be a good candidate for using

LeafactorCI with CI.

• What should trigger the refactoring process? Should it

be a commit in the development branch, or a commit in

another specific branch, should it be when opening a

pull-request, those options should be considered.

• How often should the refactoring process happen? This

should account for the number of changes that are made

over time in the project. More changes lead to more

possibilities for anti-patterns to form.

• What to do with the changes? Should a branch be

created, or should another way be used to evaluate the

changes that were made. Like e.g. sending an

informative e-mail which then can be used as reference

for a manual commit.

The adoption can be made as difficult as the developers want;

it depends on the use case.

CONCLUSION

Motivation

This work started with a problem and an opportunity. The

problem was the lack of availability of tools and means for

fixing energy bugs in the Android application development

community, which may lead to bad application reviews and

consequently less sales. As for the opportunity, it was the rise

of CI, the increasing adoption of CI practices and usage of

CI services that is improving the way that we integrate

software.

Contributions

This work adopted a method of refactoring 4 distinct anti-

patterns (Wake Lock, View Holder, Recycle, and Draw

Allocation) through static analysis of the source-code of

Android Java projects in order to improve the energy

efficiency of Android applications, furthermore, a \ac{CI}

solution was designed. The solution was composed of a

refactoring tool called LeafactorCI and a strategy for

integrating it inside a CI environment. The design decisions

were driven by the current and rising practices of Android

application development, which include the usage of GIT,

Gradle and CI platforms that use containerization

technology. The tool was evaluated by means of a user study

to discern its usability, and the data suggest that it falls in the

easy to use category.

ACKNOWLEDGMENTS

We thank all the user study participants for their time and for

their insightful feedback.

REFERENCES

1. Abhijeet Banerjee and Abhik Roychoudhury.

Automated re-factoring of Android apps to enhance

energy-efficiency. Proceedings of the International

Workshop on Mobile Software Engineering and

Systems - MOBILESoft ’16, pages 139–150, 2016.

doi: 10.1145/2897073.2897086.

http://dl.acm.org/citation.cfm?doid=2897073.2897086.

2. Luis Cruz and Rui Abreu. Performance-Based

Guidelines for Energy Efficient Mobile

Applications.2017 IEEE/ACM 4th International

Conference on Mobile Software Engineering and

Systems (MO-45BILESoft), pages 46–57, 2017. doi:

10.1109/MOBILESoft.2017.19.

http://ieeexplore.ieee.org/document/7972717/.

3. Luis Cruz and Rui Abreu. Using Automatic

Refactoring to Improve Energy Efficiency of Android

Apps. 2018.

http://arxiv.org/abs/1803.05889.

4. Ding Li and William G. J. Halfond. An investigation

into energy-saving programming practices for Android

smartphone app development. Proceedings of the 3rd

International Workshop on Greenand Sustainable

Software - GREENS 2014, pages 46–53, 2014. doi:

10.1145/2593743.2593750.

http://dl.acm.org/citation.cfm?doid=2593743.2593750

5. Cruz, L., Abreu, R. & Lo, D. To the attention of mobile

software developers: guess what, test your app!. Empir

Software Eng 24, 2438–2468 (2019).

https://doi.org/10.1007/s10664-019-09701-0

6. Michael Hilton, Timothy Tunnell, Kai Huang, Darko

Marinov, and Danny Dig. Usage, costs, and benefits of

continuous integration in open-source projects.

Proceedings of the 31st IEEE/ACM Inter-national

Conference on Automated Software Engineering - ASE

2016, pages 426–437, 2016.

doi:10.1145/2970276.2970358.

http://dl.acm.org/citation.cfm?doid=2970276.2970358

7. Bogdan Vasilescu, Yue Yu, Huaimin Wang,

Premkumar Devanbu, and Vladimir Filkov. Quality

and productivity outcomes relating to continuous

integration in GitHub. Proceedings of the 201510th

Joint Meeting on Foundations of Software Engineering

- ESEC/FSE 2015, pages 805–816,2015. doi:

10.1145/2786805.2786850.

http://dl.acm.org/citation.cfm?doid=2786805.2786850

8. Yangyang Zhao, Alexander Serebrenik, Yuming Zhou,

Vladimir Filkov, and Bogdan Vasilescu. The Impact of

Continuous Integration on Other Software

Development Practices: A Large-Scale Empirical

Study. International Conference on Automated

Software Engineering, pages 60–71, 2017

9. Jean-No ̈el Rouvignac. Autorefactor.

URLhttps://github.com/JnRouvignac/AutoRefactor.

http://dl.acm.org/citation.cfm?doid=2593743.2593750
https://doi.org/10.1007/s10664-019-09701-0
http://dl.acm.org/citation.cfm?doid=2786805.2786850

